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Blood vessels represent a complex organ with an anatomically 
diversified system of various functionalities.  For a long while, 
the final common pathway in the studies of vascular func-
tion has converged within the medial smooth muscle layer, 
where the vascular reactivity (the active force generation) and 
the extracellular matrixes (elastin sheets and collagen fibers 
providing the passive recoil force) represent the components 
in “myogenic control” of the vascular reactivity in response 
to physical stress and stretch.  There have been two very 
common and contemporary ways of studying the control of 
vascular tone across the vessel walls.  One has been at the level 
of “humoral control” that deals with the control of vascular 
reactivity by circulating hormones or other smaller molecules, 
which can be peptides, electrolytes, environmental toxins or 
non-peptide hormones.  The other has been at the level of 
“neural control”.  As most blood vessels are innervated from 
the outer adventitial site, the “neurogenic control” of the vas-
cular reactivity extends itself into various pharmacological 
domains including pre- and post-junction receptors and post-

receptor signaling mechanisms.

Signaling across vascular wall has come a long way: 
from inside out to outside in
However, the excitement of studying signaling mechanisms in 
the vascular walls came about when the vascular endothelium 
at the intimal layer is no longer regarded as an inert one-cell 
layer insolating between vascular smooth muscle layer and the 
circulating humoral space.  For more than two recent decades, 
the role of endothelium, the innermost layer of the vessel wall 
in the fine regulation of vascular tone has been well estab-
lished with the discovery of EDRF, EDHF, and EDCF.  The 
discovery of NO leading to its honoring with a Nobel Prize in 
medicine in the 90s marked the undeniable importance of the 
scientific discoveries in contemporary vascular biology and 
pushed the horizon into a newly developed dimension, ie, the 
role of reactive oxygen species (ROS) and anti-oxidative thera-
peutic approach in the treatment of vascular diseases, which 
may be related to the vascular complications in the inflamma-
tory and aging process.  

Considerable interests have now turned to the cellular 
components situated at perivascular site of the vascular wall.  
Indeed, other than the neuronal network, the external adven-
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titial site in most blood vessels also has substantial areas cov-
ered by adipocytes and fibroblasts next to the smooth muscle 
layer.  Like vascular endothelium, the cellularity embedded 
in the vascular adventitia was initially thought to be relatively 
static and passive and offer only structurally supportive and 
anatomically protective roles.  Recent evidence suggests that 
this has no longer been the case; both vascular adipocytes and 
fibroblasts have been shown to be actively involved in the con-
trol of vascular smooth muscle reactivity, and perhaps vascu-
lar growth.  This aspect, now referred to as “paracrine control” 
of vascular reactivity, would be of particular contemporary 
interest in view of the role of metabolic syndrome and obesity 
in cardiovascular complications, such as hypertension and 
diabetes.  However, despite novel discoveries reported in very 
recent years by several laboratories, whether and how these 
components are interacting to achieve an integrated control 
of vascular tone remain as a newly opened area of research in 
vascular biology.

Perivascular adipocytes: diffusible factors and control of 
vascular reactivity 
It is now well established that obesity is associated with a 
state of chronic low grade inflammation involving the pro-
duction of pro- and anti-inflammatory cytokines by white 
adipocytes, including those surrounding the vasculature[1, 2].  
The perivascular adipose tissue (PVAT) hitherto considered 
a passive structural support for blood vessels is now known 
to play a role in vascular tissue homeostasis and, therefore, 
blood pressure control[3, 4].  Soltis and Cassis[5] were the first 
to show that PVAT decreased the contractile sensitivity to 
noradrenaline in rat aorta, but had no effect on KCl and 
phenylephrine-induced contraction.  Others have observed the 
inhibitory effect of PVAT on several pro-contractile agonists, 
including phenylephrine and serotonin[6].  More strikingly, 
the contraction to angiotension II was totally inhibited, an 
observation not being shared by other investigators.  The 
interesting aspect was that the effect of PVAT could be 
demonstrated in a cascade system to show that diffusible 
substances from the fat tissue may be responsible for the 
observed inhibitory effects.  Gao et al[4] reported a dual 
mechanism for the anti-contractile effects, one that involves 
an endothelium-dependent relaxation via NO release and 
subsequent KCa channel activation, and the other involving 
an endothelium-independent mechanism via H2O2 and sub-
sequent release of soluble guanylate cyclase[7].  More recently, 
the adipocyte-derived relaxation factor (ADRF)-induced 
endothelium-dependent relaxation via NO release has been 
identified to be Ang-(1–7)[8].  Nonetheless, the physiological 
significance of finding in such in vitro study in the interaction 
between ADRF and EDRF from across the entire thickness of 
the vessels wall in vivo remains vague at large.  Akin to EDRF, 
ADRF is reported to attenuate vasoconstriction to a wide 
spectrum of various agonists.  Nonetheless, the results varied 
considerably as reported from different laboratories.  Also, 
few reports have convincingly established the relationship 
between the amount of the perivascular fat tissues[9], 

the incubation time and the magnitude of the functional 
alterations, especially in the cascade system.  While the KATP 
potassium channel was reported to mediate the relaxant effect 
of ADRF in aortic tissues[7], the voltage-operated potassium 
channel was implicated in the mesenteric artery indicating 
possible regional differences in the modulation of PVAT func-
tion or the possibility of various types of ADRF[9].  ADCF, 
which is reported to include superoxide, exerts its contractile 
effect only upon electrical stimulation[10], thus suggesting an 
interaction between perivascular nerve and fat tissues.  The 
physiological significance remains unclear.  However, Lee 
et al[11] reported that the presence of PVAT potentiated KCl-
induced contraction in mesenteric arteries in Wistar rats.  
While the above findings clearly suggest some evidence for 
the “paracrine” role of PVAT[12], a more vigor experimental 
approach is still necessary to unequivocally define the role of 
adipocyte-derived factors.  The predominant finding of the 
inhibitory effect of ADRF on the vascular reactivity appears to 
argue against the exaggerated vascular reactivity or reduced 
endothelium-dependent relaxation commonly found to be 
linked with obesity-associated hypertension or metabolic 
syndrome[13].  It is worthwhile to mention that periaortic fat 
tissue has been found to stimulate vascular smooth muscle 
cells proliferation, a structural characteristics consistent with 
vascular changes associated with aging and obesity[14].  The 
stimulating or contractile effect of PVAT has so far been 
underplayed and not been receiving adequate investigation.

Perivascular fibroblasts: source of ROS and regulation of 
vascular matrix 
Adventitial fibroblasts have been well known to produce copi-
ous extracellular matrix proteins, particularly collagen and 
elastin, for structural support of the vessel wall, but excessive 
deposition of vascular matrix proteins, especially collagen, as 
in systemic hypertension, occurs throughout the vessel with 
initial build-up taking place in the adventitial region of the 
vessel walls.  Increased production of collagen has been dem-
onstrated in adventitial fibroblasts due to stimulation with 
several mitogens, including Ang II[15], an important cardiovas-
cular regulator.  

ET-1 as another major contributor in many pathological 
conditions, such as hypertension and atherosclerosis, can 
be expressed in adventitial.  Recently, it has been reported 
that Ang II stimulation evokes expression of ET-1 in adven-
titial fibroblasts contributes to type I procollagen expression 
through activation of ETA receptors, suggesting a functional 
role for adventitial ET-1 release in the regulation of the extra-
cellular matrix[15].  Expression of ET-1 in adventitial fibroblasts 
is mediated by ·O2

– [16], consistent with the findings in many 
different cell types[17], including VSM[18, 19].  However, the 
mechanisms of oxidative stress regulating ET-1 production are 
still unclear.

Adventitial fibroblasts are involved in arterial repair[20, 21] 

and serve as one of the major sources of vascular ROS pro-
duction[22–26].  Nicotinamide adenine dinucleotide phosphate-
oxidase (NADPH oxidase) has been well know as a key ROS 
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generating enzyme in vasculature.  Reduction in adventitial 
NADPH oxidase-derived ROS or overexpression of anti-
oxidative enzymes reduces medial ROS levels and medial 
hypertrophy[20], adventitial fibroblast migration in vitro[27], and 
neointimal formation in a cuff-injured artery model[28].  

Evidence also suggests that the vascular adventitia may play 
an important role in vasomotor responses.  The ability of the 
adventitia to respond to vasoactive peptides has been discov-
ered recently in human tissue-engineered blood vessels[29].  On 
the other hand, the adventitia has been demonstrated to be a 
richer source of NO than the media, and that the adventitia-
derived NO is able to activate guanylyl cyclase and vasodila-
tation within the media of the rat aorta[30, 31].  

Conclusion and future perspectives
It has becoming clear that perivascular adipocytes and 
fibroblasts in the adventitial layer should no longer be 
considered a passive or static component of the vascular wall.  
They in fact represent active cellular entities to exert impor-
tant paracrine actions and maintain the integral functions 
of vasculature.  Adventitia is also a key source of vascular 
ROS attesting to its metabolically active signaling role via the 
regulation of oxido-reductive mechanisms.  Thus, it provides 
a strategically unique adaptation in response to pathological 
conditions, such as injury, hypoxia and pulmonary hyperten-
sion, resulting in mediation of vascular remodeling, repair 
and extracellular matrix deposition.  It may also play a 
functional role in regulating vascular tone.  While the putative 
relaxant effects of perivascular adipocytes are of academic 
interest, some of the published evidence is still subject to 
methodological questions, physiological interpretation, espe-
cially with respect to its clinical significance in vascular dys-
function associated with obesity.  

Recently, it has been reported that adventitial fibroblasts 
can produce ET-1 following Ang II treatment, which in 
turn mediates collagen synthesis in adventitial fibroblasts.  
These findings have important implications in disease state 
such as hypertension or diabetes which is associated with 
compromised function and structural remodeling of the vas-
culature which often accompanied the development of obe-
sity.  Despite the significant progresses that have been made, 
many important questions raised above regarding the role of 
adventitial function remain unanswered and require further 
research to determine its exact role in physiological and patho-
logical conditions.
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